Faster ARMA maximum likelihood estimation

نویسندگان

  • A. Ian McLeod
  • Ying Zhang
چکیده

A new likelihood based AR approximation is given for ARMA models. The usual algorithms for the computation of the likelihood of an ARMA model require O(n) flops per function evaluation. Using our new approximation, an algorithm is developed which requires only O(1) flops in repeated likelihood evaluations. In most cases, the new algorithm gives results identical to or very close to the exact maximum likelihood estimate (MLE). This algorithm is easily implemented in high level Quantitative Programming Environments (QPEs) such as Mathematica, MatLab and R. In order to obtain reasonable speed, previous ARMA maximum likelihood algorithms are usually implemented in C or some other machine efficient language. With our algorithm it is easy to do maximum likelihood estimation for long time series directly in the QPE of your choice. The new algorithm is extended to obtain the MLE for the mean parameter. Simulation experiments which illustrate the effectiveness of the new algorithm are discussed. Mathematica and R packages which implement the algorithm discussed in this paper are available (McLeod and Zhang, 2007). Based on these package implementations, it is expected that the interested researcher would be able to implement this algorithm in other QPE’s.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Change Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering

In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...

متن کامل

Maximum likelihood estimation of a noninvertible ARMA model with autoregressive conditional heteroskedasticity

We consider maximum likelihood estimation of a particular noninvertible ARMA model with autoregressive conditionally heteroskedastic (ARCH) errors. The model can be seen as an extension to so-called all-pass models in that it allows for autocorrelation and for more flexible forms of conditional heteroskedasticity. These features may be attractive especially in economic and financial application...

متن کامل

Analysis of ecological time series with ARMA(p,q) models.

Autoregressive moving average (ARMA) models are useful statistical tools to examine the dynamical characteristics of ecological time-series data. Here, we illustrate the utility and challenges of applying ARMA (p,q) models, where p is the dimension of the autoregressive component of the model, and q is the dimension of the moving average component. We focus on parameter estimation and model sel...

متن کامل

Maximum likelihood estimation of the parameters of nonminimum phase and noncausal ARMA models

The well-known prediction-error-based maximum likelihood (PEML) method can only handle minimum phase ARMA models. This likelihood (BFML) method, which can handle nonminimum phase and noncausal ARMA models. The BFML method is identical to the PEML method in the case of a minimum phase ARMA model, and it turns out that the BFML method incorporates a noncausal ARMA filter with poles outside the un...

متن کامل

An Efficient Linear Method of Arma Spectral Estimation

A three step method for obtaining nearly maximum likelihood ARMA spectral estimates is presented. The computational complexity of the algorithm is comparable to YuleWalker methods, but the method gives asymptotically efficient estimates. The implementation of the algorithm is discussed, and numerical examples are presented to illustrate its performance.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2008